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ABSTRACT 

We generalize the technique of Markov Extension, introduced by 

F. Hofbauer [10] for piecewise monotonic maps, to arbi trary smooth  in- 

terval maps. We also use A. M. Blokh's [1] Spectral Decomposition, and a 

s trengthened version of Y. Yomdin's [23] and S. E. Newhouse's  [14] results 

on differentiable mappings and local entropy. 

In this way, we reduce the s tudy of C r interval maps to the consideration 

of a finite number  of irreducible topological Markov chains, after discarding 

a small entropy set. For example, we show that  C °O maps have the same 

properties, with respect to intrinsic ergodicity, as have piecewise monotonic 

maps. 

1. I n t r o d u c t i o n  

We consider the measurable dynamical system defined by a C ~ self-map f of 

the interval. Following the "intrinsic" point of view introduced by B. Weiss [22], 

we do not distinguish a priori one invariant measure but we are interested in all 

(ergodic) invariant, probability measures with large entropy. Particularly we ask: 

How large is Max(f),  the set of m a x i m a l  measures ,  i.e., ergodic, 

invariant, probability measures which maximize metric entropy? 

What conditions do imply intr insic  ergodic i ty ,  that  is, existence 

of a unique maximal measure? 

F. Hofbauer [10] has studied in this respect piecewise monotonic maps, i.e., 

interval maps with f ini te  critical and discontinuity sets. He has shown that,  for 
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these maps, Max(])  is never empty and is finite as soon as the topological entropy 

of ] is positive. Here we show that these results remain when the finiteness of 

the critical set is replaced by a smoothness assumption. E.g., for a C °~ map, 

whose critical set can be uncountable, we have: 

THEOREM 1.1: Let .f: [0,1] --* [0,1] be C ~ .  I f  the topological entropy o f f  is 

positive (htop(f) > 0), then: 

(1) Max(f )  is non-empty and finite, 

(2) topological transitivity implies intrinsic ergodicity. 

In section 2 below we state the results of this paper. We then proceed to 

the proofs. In section 3, we deduce from Y. Yomdin's theory on differentiable 

mappings [23] a bound on "local entropy", which seems of general interest. It 

allows us to get a simple proof of Newhouse's existence result. In section 4, 

we use this bound to study the topological entropy in A.M. Blokh's Spectral 

Decomposition [1]. In this way, we prove a topological multiplicity theorem 

about "transitive components". 

In section 5, we study the structure of "transitive components", so that the 

previous multiplicity result gives the result above. We do it by generalizing 

methods of F. Hofbauer [10]: we represent the smooth system by building its 

"Markov extension", i.e., a topological Markov chain, and prove an isomorphism 

theorem. 

An important feature of this generalization is that it can be applied to some 

non-trivial classes of multi-dimensional dynamical systems [5]. 

ACKNOWLEDGEMENT: I am indebted to Philippe Thieullen for many 

discussions which have greatly improved this paper, as well as for introducing 

me to this subject in the first place. 

2. S ta t em ent  of results 

2.1 LOCAL ENTROPY. We recall some definitions (due to R. Bowen [2]). 

Consider f :  X -* X a continuous self-map on some compact, metric space. 

The (e, n)-bal l  centered at some point x is: 

Bn(x,e) = {y e X: d( fk (y ) , f k (x ) )  < e Vk = O , . . . , n -  1}. 

An (e, n ) -eover  of S C X is a subset R C X such that S c U , e a  Bn(x, e). 
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Finally, r(e, n, Y)  is the minimum cardinal of a (e, n)-cover of some (not 

necessarily invariant) subset Y. We recall that the topological entropy of f ,  

htop(f), can be computed as the limit, when (5 does to zero, of: 

htop(f, (5) = lim sup -1 log r(& n, X). 
n ~ o ¢  n 

We can now give: 

The local e n t r o p y  of f ,  hlo¢(f), is defined to be the limit when Definition 2.1: 

e ~ 0+ off 

1 
htoc(f, e) = lira limsup - sup logr((5, n, Bn(x, e)). 

5 ~ 0  n---*oo n x E X  

We prove in section 3: 

THEOREM 2.2: Let M be a compact, riemannian, m-dimensional manifoM 

with boundary and f: M ---* M a C r self-map with 1 < r < oc. Let M ( f )  = 

maxx~M IITxfllx and R ( f )  = infk>_l ~ / M ( f  k) (spectral radius of T f ) .  Then: 

hloc(f) < _m logR(f) .  
r 

Then we remark that, from this, it is easy to deduce the following result due 

to S.E. Newhouse, avoiding the use of Pesin theory: 

THEOREM 2.3 (S.E. Newhouse [14]): Let M be a compact, riemannian manifold 

with boundary and f: M --~ M a C °~ map. Then: 

Max(f) ~ 0. 

Local entropy will also be crucial for the following results. 

2 . 2  E N T R O P Y  IN T H E  S P E C T R A L  D E C O M P O S I T I O N .  A.M. Blokh's Spectral 

Decomposition (Theorem 4.4 below) implies that, for a continuous self-map of 

the interval, the non-wandering set (which in particular carries every invariant 

probability measure) is the union of the transitive components, defined as follows: 

Definition 2.4: Let f :  X ~ X be a self-map on some topological space. A 

t r ans i t i ve  subse t  is a subset T of X such that 

(i) T is f-invariant: f ( T )  C T, 

(ii) the restriction f :  T --* T is topologically transitive: for every open set 

U, V intersecting T, there exists n _> 1, such that  f - ~ ( U )  N V ~ 0. 
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A t r ans i t i ve  c o m p o n e n t  is a subset T C X such that: 

(i) T is a transitive subset, 

(ii) i fT  ~ c X is another transitive subset then either T ' N T  is finite or T'  C T. 

MULTIPLICITY THEOREM 2.5: Let f:  [0,1] --* [0, 1] be C ~ with 1 < r <_ oo. 

Let M ( f )  = supxe[o,1] [f'(x)[ and R ( f )  = infk>l ~ .  Assume that H is a 

constant such that: 
1 
- l o g R ( f )  < H _< htop(f). 
r 

Then there are a finite, non-zero number of  transitive components T with topo- 

logical entropy htop(flT) >_ H. 

Taking H = htop (f) we solve the topological analogue to intrinsic ergodicity: 

COROLLARY 2.6:  Let f :  [0, 1] ~ [0, 1] be C ~ with 1 < r <_ oo. If: 

(2.1) htop(f) > 1 logR(f)  

then the number of  transitive components T with max imum entropy, i.e. such 

that: 

htop(f[T) : htop(f), 

is finite and non-zero. 

Remark: The bound log R ( f ) / r  is sharp as shown by the examples in Appendix 

A. 

2.3 COMBINATORIAL MODEL. We now turn to the description of the struc- 

ture inside a given transitive component. The following notion will give us a 

combinatorial model of the measurable dynamics of these components: 

Recall that  every o r i en ted  g r a p h  G (countable, maybe finite, set with some 

arbitrary relationship ~ )  defines a Topological  Ma r k o v  Chain ,  or T . M . C .  

Take the action of the left shift a on the set E(G) of two-sided infinite paths on 

G: 

E(G) = {(an)nez • Gz: an -* an+l is an arrow of G } ,  

G also defines a one-sided T.M.C. (F,+(G), a) in an obvious way. 
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G is said to be i r reducib le  if for every (a, b) E G 2 there exists a path from a 

to b, i.e., a finite sequence go , . . . ,  gn such that go = a, gn = b and gi ---' gi+I for 

i = 0  . . . .  , n - 1 .  

The following quantity is chosen as the "intrinsic size" of subsets: 

Definition 2.7: Let f :  X ~ X be a measurable self-map. We denote by A, t I (X)  

the set of f-invariant probability measures, by AdTg(X ) C A/If(X) the subset of 

ergodic, invariant, probability measures, and by h, ( f )  the usual metric entropy 

of ( X , f , p ) ,  for # e My(X) .  

Let Y be a measurable subset of X, not necessarily invariant. We define the 

me t r i c  e n t r o p y  of  t h e  subse t  Y with respect to f to be: 

hmet(f, Y) = sup{hu(f): # e AdTg(x ) such that p(Y) > 0} 

(if there is no such p we set hmet(f, Y) = 0). The metric entropy of the whole of 

X is simply h(f) = hmet(f, X) = sup{hu(f): # 6 34f(X)}.  

Remarks: Y is a null-set for every invariant, ergodic, probability measure with 

entropy strictly greater than hmet(f, Y). 

If X is compact and f continuous, h(f) is the topological entropy, htop(f)  

(according to the "variational principle", see, e.g., [6]). 

Once we adopt this definition of size, we get the following notion of isomorphism 

(see, for instance, S.E. Newhouse and L.-S. Young [16] for similar ideas): 

Definition 2.8: Let f :  X --* X and 9: Y ~ Y be two measurable self-maps. We 

will say that (X, f )  and (Y, 9) are h -con juga ted  if there are forward invariant 

subsets X'  C X,  Y' C Y such that: 

(i) there exists ~, : X ~ ~ Y', bi-measurable (¢ is measurable and ~-1 is 

well-defined and also measurable) and such that ~ o f = 9 o ~ (we say 

that ~, is a m e a s u r a b l e  i somorph i sm between (X ~, f )  and (Y', g)). 

(ii) The neglected parts are small: 

nlax(hmet(f ,  X \ X ' ) ,  hmet(g, Y \ yt))  < h(f).  

The left hand side of the above inequality is called the c o n s t a n t  of the h- 

isomorphism. 

The inequality (ii) above is obviously equivalent to the ones obtained by 

substituting any of h(g), hmet(f,  X') or hmet(g, yt)  for the right hand side h(f). 
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Recall that  the n a t u r a l  e x t e n s i o n  ] :  IP ~ T of f :  T --~ T is defined as 

follows: 

/" = {x. e TZ: V.. e Z :~._~ e f -~ ( . e , , ) } ,  

](:~) = y, ~,, = ~'.+~ ( .  ~ Z).  

The map ~: IP -i* T defined by ~-(:~) = .v0 makes (T, f )  a topological extension 

of (T, f ) .  More importantly, it is well-known (e.g., [17, p. 13]) that. the induced 

map between sets of invariant probability measures ~.: .h4](%r) ~ A4f(T)  is onto 

and one-to-one and preserves entropy and ergodicity: h~.p(f)  = hp(]) and fi is 

ergodic iff ~-.p is. 

We are at last ill position to state the: 

STRUCTURE THEOREM 2.9: Let f: [0, 1] ~ [0, 1] be C r with 1 < r < c~. Let 

M ( f )  = supxe[o3] If'(x)[ and R( f )  = infk>l ~ .  Let T be a transitive 

component with topological entropy htop(f[T) > ! log R( f ) .  
r 

The dynamics on T are described by an irreducible topological Markov chain 

in the sense that the natural e.xtension of (T, f )  is h-conjugated to the chain. 

2.4 APPLICATION TO INTRINSIC ERGODICITY. The structure theorem together 

with the results of B.M. Gurevi~ [9] (Theorem 7.1 below) allows us to deduce 

from the Multiplicity Theorem the following un i q u e n e s s  result: 

COROLLARY 2.10: Let f ,  r and R( f )  be as above. I f  the topological entropy of 

f is big enough, i.e., i~ 

htop(f) > 1 logR(f) ,  
r 

then the number of ma~ximal measures is finite and their natural extensions are 

Markov measures on a T.M.C.: for instance they are Bernoulli. 

If, in addition, f is topologically transitive, then the maximal measure, i f  it 

exists, is unique. 

2.5 QUESTIONS. Theorem 2.5 completely solves the question of finite/infinite 

topological multiplicity under smoothness assumptions. One can ask for a more 

precise result, like in the piecewise monotonic case (see [4]): 

• Is there an explicit and "reasonable" bound (i.e., given by a simple formula 

and not too far from being sharp). The difficulty is that Yomdin's theory does 

not give such estimates. 
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On the one hand, Newhouse's result solves the existence problem for arbitrary 

compact C °¢ dynamical systems. On the other hand, we have seen that there 

exists C r interval maps, with r arbitrarily large but finite with no maximum en- 

tropy transitive component. More interestingly, in Appendix A, we build simple 

examples of C r interval maps which are topologically transitive and have no max- 

imal measure. We remark that they have small entropy: htop(f) < l l o g R ( f ) .  

So we ask: 

• Does the condition h t o p ( f )  • ~ l o g R ( f )  imply existence of a maximal 

measure? 

The main remaining questions are about the dynamics inside a transitive 

component or, more simply, for a topologically transitive f :  

• Is this condition necessary to ensure uniqueness? to ensure h-isomorphism 

to a T.M.C.? 
1 • More generally, is the condition htop(f) > 7 log R( f )  really relevant for 

the dynamic inside transitive components of C * interval maps? i.e., do new 

phenomena appear when this condition is weakened (e.g., replaced by I C1+~ 

and htop(f) > 0)? 

3. Loca l  e n t r o p y  

Let us make some remarks about our definition of local entropy 2.1 above. 

It is inspired by R. Bowen's definition of asymptotic h-expansivity [3] (see also 

S.E. Newhouse's definition [14]). Notice the place of the "supxex":  our definition 

provides a uniform bound and thus it majorizes these previous, finer notions, 

therefore it will be much easier to use. We will use it directly in the next section. 

Before proving Theorem 2.2, we remark that this result implies a similar result 

proved by S.E. Newhouse for his local entropy using Pesin theory (because it was 

based on Y. Yomdin explicit volume estimates). As in Newhouse's paper [14] we 

get: 

COROLLARY 3.1 (S.E. Newhouse [14]): Let I: M -+ M, R( f )  be as above. Then 

log R( f )  bounds the defect in upper-semicontinuity of the metric entropy with 

respect to the vague topology. 

In particular, if f is C ~,  then the metric entropy is upper-semicontinuous. 

Therefore: 

Max(I)  ¢ O. 
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Indeed, it is clear by standard methods (contained in M. Misiurewicz's proof 

of the variational principle [13]) that local entropy bounds the defect in upper- 

semicontinuity of the metric entropy. We have: 

PROPOSITION 3.2 (after S.E. Newhouse [14]): Let f: X -~ X be a continuous 

map on a compact metric space. 

Assume that #n is some sequence in Ad f ( X )  converging to some #. Then: 

t imsuph ,~ ( f )  ~ h , ( f )  + h,oc(f). 
r t  ~ o o  

(For the sake of completeness we give a proof in Appendix B.) 

The proof of Theorem 2.2 is modelled after the proof of Yomdin's result 

[23, Proposition 2.2] about "local volume", v° ,~(]) ,  which is the growth rate 

of the volume, counted with multiplicities, of the image of B~(x,  e) by f~ as 

n -* oo, for small e > 0. The main point of the proof below, in comparison with 

Yomdin's proof, is the remark that the reparametrizations in Y. Yomdin's theory 

can be assumed to be contracting (d(C(x), ¢(y))  _< d(x, y)) and "telescoping" 

(point (3) of the claim below). 

For simplicity, we pretend that M is simply an open subset of ]~m and refer to 

[23] for the general case. 

The first step of the proof is the strengthening of Y. Yomdin's Theorem 2.1 in 

[23]: 
All statements made above are valid with the differentiability order r of f not 

necessarily integer. We will say that f is C ~ with 0 < r < oo if: (i) f is k 

times continuously differentiable (with k = LrJ the largest integer with k < r); 

(ii) f(k) is Hblder with exponent r - k • (0, 1]: there exists a constant K < c~ 

s.t. If(k)(x) - f (k)(y)l  <_ KIx  - y[~-=k. The smallest such constant is called the 

H b l d e r  c o n s t a n t  of order r of ] and is denoted by Hbl~(h). 

We say that a map h is C ~ (r > 1) on the dosed cube Qm = [0,1] m if it is C ~ 

on the interior of Qm and all differentials of order up to r can be continuously 

extended to the border of Qm. We write R =  [rJ, a = r -  LrJ • (0,1]. The 

C~-size of h, Ilhll~, is: 

tlhll~ = sup{Hbl~(h), IId~h(x)ll: s = 1 , . . .  , R  and x • int Qm}. 

(lld~h(x)l[ is the maximum of the absolute values of the partial derivatives of 

order s of all components of h at x.) 



Vol. 100, 1997 INTRINSIC ERGODICITY OF SMOOTH INTERVAL MAPS 133 

PROPOSITION 3.3: Let f :  B(0, 2) C R m ~ R m be C ~. Le t  a: Qm ~ B(O, 2) be 

c with II ll  -< 1. 

Then there exists ~ 1 , . . . ,  Cq with q <_ CI max(llflG 1) m/~ such that  

(1) ~i  : Qm __~ Qm is a C ~ mapping,  

(2) q Ui=I Im(¢i) D (f  o a) - I (B(0,  1)), 

(3) Hd*(f o a o ¢i)11~ -< 1, 

(4) every ¢i is con t rac t ing .  

The constant  C1 depends only  on m and r. 

To prove this, it is enough to apply Y. Yomdin's Theorem 2.1 to the "complete" 

mapping x ~-* (x,  f o a (x ) ) .  For the sake of completeness, we give a self-contained 

proof of the one-dimensional case. It is considerably simpler than the general 

case and is the only one we shall need. 

P r o o f  o f  the proposi t ion for m = 1: Let g = f o a. A simple computation 

shows that ]lgl]~ <- Kl[f]l~, with K a constant, depending only on r. Subdividing 

Q1 = [0,1] into [(lOOKllfl]~)l/~] subintervals of equal length and using the 

corresponding affine reparametrizations we are reduced to as many mappings 

h: [0, 1] --~ N such that h is C ~ and: 

Hbl~(h) _< 1/100. 

We fix one of the mappings h. 

Let H be the polynomial defined by the Taylor developement of degree R of h 

at 1/2. We see that  Ih(S) - g(~)l <_ 1/100 on [0,1], for s = 1 , . . . , R .  

Where IHI > 1 + 1/100, Ihl > 1: the image falls outside the ball of inter- 

est B(0, 1). We can restrict ourselves to the subintervals J of [0, 1] defined by 

IHt <_ 1 + 1/100. There are at most R of them. Take the corresponding affine 

reparametrizations ¢: [0, 1] ~ J. For each one, H o ¢ is a polynomial of degree 

R with IH o ¢1 <- 1 + 1/100 on [0, 1]. But, on the finite-dimensional vector space 

defined by the polynomials of degree at most R, all norms are equivalent: 

max I(H o O)(s)(x)[ <_ K '  max I(H o ¢)(x)l K'(1 + 1/100) 
xE[o,1] xE[o,1] 
0 < s < R  

with K ~ depending only on R. 

It is therefore enough to subdivide again into [K'(1 + 1/100)1 subintervals of 

equal length and use the related affine reparametrizations ¢ to bound by 1 all 
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derivatives of h o ¢ o ~/, up to order R. We remark that all our reparametrizations 

are ai/ine and contracting. Therefore Hhl~(h o O o ~) < Hhl~(h) _< 1 ~s well. 

The proposition is proved with {¢1 . . . . .  g,q} = {¢ o ¢} and 

Cl = ((lOOK) '/" + 1). R .  (K'(1 + 1/100) + 1). II 

Proof of the theorem: Let x0 E M. Fix eo > 0 so small that 2eollfH~ <_ M ( f )  

and eo < 1/2. Consider "charts" along the orbit of x0: 

)Ck: x e B(fk(xo),eo) H to + (x -- fk(xo))/2eo E B(to, 1/2) C Qm 

with to the center of Qm. 

Define fk = Xk+l o f o X-~ 1, Fk = fk-1 o . . . o  fo (Fo = Id) and Vn -- 

(y e Rm: Fk(y) e B(to,1/2) f o r k = 0 , . . . , n - 1 } .  W r i t e a = C l M ( f )  m/r. 

Remark that  Ilfkll~ <- M ( f )  and )co(Bn(xo, eo)) = V~. So we can study 

B,(xo,  e0) by applying the previous proposition to the fi 's. 

C L A I M :  T h e r e e x i s t s a f a m i l y o f C ~ m a p s { ¢ n , ~ : Q m ~ M : n > O ,  1 < i < ~ ;  n } 

such that, for all n > O: 
~n 

(1) (-Ji=lIm(¢~,~) D Vn+l, 

(2) [IFno¢=,ill~ < 1 fori = 1 , . . . , ~  n, 

(3) / f n  > 0, for everyi  E { 1 , . . . , a  n} there ex i s t s j  E { 1 , . . . , ~  '~-1} and a 

c o n t r a c t i n g  map cn- l , j  such that: n,i 

~)n--l,j 
Cn,i = C n - l j  o ,~,i 

(we say j is defined by i and n), 

(4) Cn,i is contracting for i = 1 , . . . ,  g ' .  

n,z m , j  • .o¢:~ 1'i(~-1) with b y j ( k ÷ l )  We shall write Cm'J for Cm+l,j(m+l) O. , j (k )  defined 

and k + 1 as in (3) above. 

This is essentially [23, Lemma 2.3] with the addition of the telescoping and 

contracting properties (3) and (4). Using the previous proposition instead of 

Theorem 2.1 of [23], the necessary modifications of the proof are clear. 

Let (~ > 0. We shall build a (~f,n + 1)-cover for B,~+l(xo, eo) for all n _> 0. 

Select R a finite (5, 1)-covering of Qm. Let: 

S = X o '  ¢~#(R . 
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Let us show that  S is an (/5, n +  1)-covering of Bn+l(xo, ~o). Let x E B~+l(xo, co). 

By claim (1): 

UIm(~to 1 o ~'n,i) D Bn+l(xo, co), 
i 

so there exists t E Qr. and i ~ {1 . . . . .  ~n} such that: 

x = Xo '  o ~n ,~ ( t ) .  

Now, there exists t' E R such that It' - t t _</5. Write x' for the image of t ~ by 

\01 o i/,n.{. Let us prove that x e Bn+l(X',8). For every m = 0 . . . .  ,n: 

f " ( x )  = f "  o Xo 1 o ¢. ,~( t)  = x7~ 1 o Fm o ~ j ( t )  

and likewise for fm(x') .  By claim (3) above: 

Cm,.k for some k. 

But the mappings: ¢m,f¢, Fm o Cm,k and X~ 1 are contracting. Therefore: n ,3  

I f ro (x )  - f ~ ( x ' ) l  < It - t ' l  </5. 

Hence, S is indeed a (/5, n +  1)-cover for B~+I (x0, e0). The cardinal of this cover 

is bounded by ~ card R, with R independent of n, so that: 

m 
hloc(f) _< hlo~(f, e0) _< log,~ = - - l o g M ( f )  + C ?. 

with C = log CI a constant depending only on m and r. To get rid of C just 

write hlo~(f) = hlo¢(fq)/q < m log M ( f )  + C/q and let q --+ oo. | 

4. E n t r o p y  in t h e  spec t r a l  d e c o m p o s i t i o n  

Throughout this section f is a continuous self-map of the unit interval. For 

such maps, A.M. Blokh [1] has shown the existence of a "Spectral Decomposi- 

tion" somewhat similar to Smale's Spectral Decomposition for Axiom-A diffeo- 

morphisms [19]. This decomposition can be derived by the analysis of the periodic 

intervals, defined as follows: 
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Definition 4.1: An interval J C [0, 1] is said to be a pe r iod ic  in terva l  if it is 

compact, has non-empty interior and if there exists an integer n _> 1 such that: 

(i) J, f ( J ) , . . . ,  f n - l ( j )  have pairwise disjoint interiors. 

(ii) ff~(J)= J. 

n is called the p e r i o d  of J.  The o rb i t  of J is orb(J)  = J U f (J )  U.. .  U f n -  1 (j). 

It is sometimes convenient to consider the set orb(J)  and not to have to choose 

one periodic interval. Let us remark that orb(J)  = orb(l)  (I, J periodic intervals) 

does not imply that I = f k ( j )  for some k _> 0. 

Definition 4.2: A subset C C [0, 1] such that C = orb(J)  for some periodic 

interval J is called a cycle. 

The number of connected components of the cycle is called its per iod .  Each 

connected component is said to be a periodic interval def ined  by the cycle C. 

We write C for the set of cycles. 

Clearly a periodic interval defined by a cycle is indeed a periodic interval with 

period equal to the period of the cycle. 

Remark: Any non-wandering, non-periodic point belongs to some cycle. This 

accounts for the r61e of these cycles in building the Spectral Decomposition. 

A. M. Blokh has introduced the following subsets: 

Definition 4.3: (A.M. Blokh [1]). To every cycle C E C is associated the follow- 

ing subset of [0, 1]: 

{ fk(B(x,e) A C ) =  C } .  P E C ( C ) =  x e [ O ,  1 ] : v e > o U k > 0  

If PEC(C) ¢ O, we call it a pos i t ive  e n t r o p y  c o m p o n e n t  (P.E.C. for short). 

We can now quote (part of) A.M. Blokh's theorem: 

THEOREM 4.4 (A.M. Blokh's Spectral Decomposition Theorem [1]): Let 

f: [0,1] [0, l] be conti,uous. 

Every transitive subset is included in a transitive component. 

Every transitive component either has zero topological entropy or can be 

written as PEC(C) for some cycle C. 

Reciprocally, every subset of the form PEC(C) ¢ O (with C a cycle) is a 

transitive component with positive topological entropy. 

For future use (section 7) we make the transitivity properties a little more 

precise, f l ( f )  is the set of non-wandering points. 
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LEMMA 4.5: Let K = PEC(C)  ~ ~ with C a cycle. For every x C 

K M ~ ( f )  A i n t C  and e > O, 

U fk(B(x' ~) n C) D C ", Y 
k>o  

with Y a finite set, depending only on K,  not on x and e. 

We shall only prove - - a n d  use--- that  Y can be chosen a countable set. 

Proo~ Select some countable base l; of the topology. 

For every x and e as above, take V E ]3 such that  V C B(x,  e), x E V. Let U be 

the connected component of the forward invariant set Uk>0 f k  (VM C) containing 

x. As x E int C, U contains a neighbourhood of x. As x is non-wandering, there 

exists n _> 1 such that  f~(U)  • U ~ O. But this implies fn (U)  C U. Therefore: 

n - 1  

U nc) D U Sk(V n C) = U 
k>_o k>o k=o 

is a finite union of intervals: taking the closure can add only finitely many points 

11, depending on the open set V (and the smaller is V the larger is Y1). So 

one may take Y to be the union of the Yl'S when the open set V ranges in the 

countable base l;. I 

We remark that  two cycles may overlap each other. This is the motivation 

behind the following definitions. 

Definition 4.6: Let C be a cycle. The e x c l u d e d  se t  of C is: 

X(C)  = U int(c), 
C 

where c ranges over the cycles which do not contain C. The r e d u c e d  cyc le  C '  

of C is defined to be: 

c '  = U c o n v ( I  \ x(c}} 
I 

where I ranges over the connected components of C and conv is the convex 

closure. 

Remark that,  except if C' = C, the reduced cycle C r is not a cycle: it is not 

even forward invariant. 
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LEMMA 4.7: 

(i) If  C is a cycle azld C' is its reduced cycle then: 

PEC(C) C C' C C. 

(ii) Let Cl, C2 E C. The two reduced cycles C~, C~ have interiors either 

disjoint or nested. If  the reduced c~,cles are nested, then the true cycles 

are also lmsted. 

Proof (i) Let C be a cycle. Clearly C' C C. If x E C \ C' then .r E int(c) with 

c a cycle and C ¢ c. Hence Uk>O f k ( B (  .r, e)) C c is not dense in C: x ~ PEC(C). 

Tiros PEC(C) C C' and (i) is proved. 

(ii) Let C1, C.2 E C. If C1 = C2 or if the interiors of Ct and C2 are disjoint, (ii) 

is clear. We nmy assume that C2 ~ C1. Thus: 

(,) int(C.)) C X(C1). 

Let Ii be an arbitrary connected component of Cl. Set. I[ = conv(It \ X(Ct)).  

Because of (,),  I1 \ X(C1) has either points both to the left and to the right of 

C2 N I1 (case 1) or only on one side (case 2): 

Ill case l: I~ D C2nI1. Therefore, C[ D C2, so that the cycles, aud the reduced 

cycles, are nested. 

In case '2: I~ n int(C2) = 0. Therefore, C~ N int(C2) = 0 and int(C~) N int(C.~) 

= 0 .  | 

FINITE ~iULTIPLICITY. We prove an "abstract" version of the ammunced 

Multiplicity Theorem 2.5 under purely topological hypothesis: 

THEOREM 4.8: Let f: [0, 1] ---* [0, 1] be a continuous map. If H is a constant 

strictly greater than hlo¢(f) (assumed to be finite), then: 

The number of P.E.C. with topological entropy greater than H is fildte. 

In combination with the estimate on hlo¢(f) of section 3, this will give the 

Multiplicity Theorem 2.5. 

LEMMA 4.9: Let f: [0, 1] ---* [0, 1] be a continuous map. 

For every e > 0 there exists K < oc such that, if  C is a cycle of period n, then: 

htop(flC) <_ hlo¢(f, e) + K /n .  
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Proo~ The topological entropy of C is bounded by h top( f lC ,  e) -t- bloc(Jr, e). 

Let Io be an interval defined by C. Set Ik = ]k(Io). I0 . . . . .  In - i  are the con- 

nected components of C. ]'~(Io) = I0. Therefore htop( f tC ,  e) = h top( f ,  I0, e) < 

2 logr(e, n, I0). Hence: 
n 

htop(f,C,e)< l ( ~ l o g [ d i a m ( I k ) ] )  
n \k - -0  

Any single term of the sum is at most logic-i] .  For each k, the kth term is zero 

except if Ik has diameter greater than or equal to e. The number of such Ik is 

less than ¢-i .  Therefore: 

htop(flC) < hioc(f, ¢) + (e -1 logic - i ]  )/n. | 

Proof of the theorem: Let us call, during this proof, cycles C such that: 

htop(fl PEC(C)) _> H, 

d i s t i n g u i s h e d  cyc les .  Fix e0 > 0 such that hioc(f, e0) < H. 

Let us first make a simple remark. Let C be a cycle and a~ssume that the 

diameter of PEC(C) n J is less than e0 for every connected component J of C. 

Then PEC(C) C U j  B~(x j ,  eo) where J ranges over the (finitely many) con- 

nected components of C, and xg is an arbitrary point of PEC(C) n J. Therefore 

htop(f, PEC(C)) _< hlo~(f, co) < H: C cannot be distinguished. 

CLAIM: One cannot have an "infinite tower": 

Cl }C~ }-.. 

of distinguished cycles. 

Proof of the claim: Assume by contradiction that there exists such a tower 

Ci ~ C2---.  The previous lemma shows that distinguished cycles have their 

periods bounded by some constant. We can therefore assume that  they have 

constant period n. 

For every i = 1, 2 , . . . ,  select Ji such that Ji is a connected component of C~ 

with: 

diam(PEC(C,:) n Ji) > e0. 
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By taking a subsequence, we may assume that the Ji's are decreasing. Set J = 

ni_>0 Ji. It is a compact interval with diameter at least e0. Let L~, resp. R~, 

be the left, resp. right, connected component of J / \  J.  Their diameters go to 

zero as i ~ co. Remark that PEC(C/) n J/ C L/U Ri. We may assume that  

PEC(C/) n Li is infinite for all i _> 1. 

The continuity of f implies that, for large i, fn(Li) meet only one of L/ 

and R/. 

First case: fn(L/) C Li U J. Hence, J /be ing n-periodic, orb(Li N PEC(Ci)) n 

int J/ C Li. As PEC(C~) is topologically transitive, orb(Li ;~ PEC(C/)) r) J/ = 

PEC(C/) n Ji C L/. But this contradicts diam(PEC(C/) n J/) _> e0. 

So we are in the second case: fn(L~) C R iuJ .  Hence, 0 ~ fn(PEC(Ci)ALi) c 

Ri. If fn(Ri) did not meet Li then no fk(Ri), k > 0 would, contradicting the 

transitivity of PEC(C~). Hence fn(R~) C L~ u J. Therefore PEC(C~) N L~ is 

f2~-invariant. By the same remark as the one at the beginning of the proof, this 

implies that  the (lim sup of the) topological entropy of PEC(C~) is smaller than 

hloc(f) < H, a contradiction. The claim is proved. | 

The claim ensures that: 

(1) Every distinguished cycle contains some distinguished cycle which is 

m i n i m a l  for inclusion. 

(2) Every minimal distinguished cycle is contained in a finite number of 

distinguished cycles. 

Therefore it is enough to show that the minimal distinguished cycles are in 

a finite number. As they are not nested, their reduced cycles are disjoint (see 

Lemma 4.7). But each one of them contains an interval with diameter at least 

eo > 0. This concludes the proof of the theorem. | 

5. Globa l  h -con juga t ion  

We are going to prove the h-conjugation of the natural extension of ([0, 1], f )  

with a T.M.C. 

Let f :  [0, 1] ---* [0, 1] be continuous. We may assume that f({0, 1}) c (0, 1). 

First we define the symbolic dynamics of ([0, 1], f ) .  

Detinition 5.1: The cri t ical  poin ts  of f are the points of [0, 1] which have no 

neighbourhood on which f is strictly monotonic. The set of critical points is 



Vol. 100, 1997 INTRINSIC ERGODICITY OF SMOOTH INTERVAL MAPS 141 

denoted by C(f) and its backward orbit Uk>O ]-kC(f) by C - ( f ) .  

The n a t u r a l  p a r t i t i o n  is the collection P of the connected components of 

[0, 1] \ C(]). Any z e [0, 1] \ C -  (f) defines a real  (infinite) i t ine ra ry ,  F(x) = 

A E pN defined by: 

fk(x) E Ak. 

The set of real itineraries is: 

~+(],P) = {A • pN: A f-k(Ak) ~ 0}. 
k>_o 

The symbolic dynamics is the closure of these: 

~+(f ,  P) -- ~ ( f ,  P) C P~, 

P being endowed with the discrete topology. The elements of E+ (f, P) \ ~_  (f, P) 

are called v i r t ua l  i t inerar ies .  

Each finite word Ao" ." An • pn+l  defines a sub-interval: 

[Ao...A,~] = 5 f--k(Ak)" 
k=O 

Remarks: 1. If A • P, then A and f(A) are open subsets of [0,1], A is 

disjoint from all other B • P. In addition each restriction f: A ~ f(A) is a 

homeomorphism so that, for any set S C A, 

o f ( s )  = ](o(s) ) .  

2. We note that C(f) may well be equal to the entire [0, 1] interval. The class 

of piecewise monotonic maps studied by F. Hofbauer is characterized by C(f) 
- -and  P - -  finite. Here C(f) may be any compact, even uncountable, and P may 

be empty, finite, or countably infinite. 

3. We notice that we choose to endow P with the discrete topology so as to 

add as few itineraries as possible. 

For future reference, the n a t u r a l  ex tens ion  of E+ (f, P) is: 

~ ( f ,  P) = {(A~)~ez e pZ: Vp e Z (Ap+n),~>_o e ~+(f, P)} 

under the action of the left shift a. 

Let us state the relationship between the original system ([0, 1], f )  and the 

symbolic system (2+ (f, P), a): 
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Definition 5.2: An interval I C [0, 1] with non-empty interior is said to be a 

h o m t e r v a l  for f ,  if fk l I  is a homeomorphism on its image, for every k _> 0. We 

write H(f)  for the union of all the homtervals of f .  

LEMMA 5.3: There exists invariant subsets E~(f ,  P) C ~+( f ,  P), X"  C [0, 1] 

such that the coding: 
F :X"  ) E~( f ,P)  

x , ~ (Ak)k>O (fk(x) C Ak) 
is a measurable isomorphism. 

Moreover Z ~ ( f , P )  is o[ full measure for any ergodic atomless invariant 

probability measure. The same hold for X" with the additional condition that 

C(f)  is a null set for the measure. 

More precisely, X" = [0, 1] \ ( H ( f )  U C-( f ) ) .  

It is well-known that, if f is C 1+~' for some a > 0, then any ergodic, 

invariant, probability measure of ([0, 1], f )  with positive entropy satisfies the 

condition above. 

Proof'. Set X" as above. Remark that H(f)  is the countable union of the 

maximal homtervals (they have pairwise disjoint interiors) and that f -1  (H(f))  C 

H(f )  t2 C(f). If H(f)  were not a null set for some ergodic measure, the same 

would be true of some maximal homterval. But it is well known that points in 

a homterval are either wandering or tend to a periodic orbit. So the measure 

would have atoms: we may neglect H(f) .  By invariance of the measure, we may 

neglect all of [0, 1] \ X". 

Set E~_(f,P) = E + ( f , P ) \ F ( H ( f ) \ C - ( f ) ) .  As an entire homterval 

defines one itinerary, E~, (f, P) \ E~ (f, P) is countable. It remains to prove that  

E+ (f, P) \ E~_ (f, P), the set of virtual itineraries, is countable: 

If AoA1.. .  is a virtual itinerary, then, as it is the limit of real itineraries, for 

every n > 0, Ao. . .  A,~ is the beginning of some real itinerary and this implies 

[Ao---A,~] ¢ @. But [Ao.-. An] is compact, so Nn>o [Ao... Am] is non-empty. 

Moreover, 

[A0...An] \ [Ao . . .An]  c U f - k C ( f )  
k=0 

SO Nn>0 [Ao.. .  An] contains a preimage by f "  (m >_ 0) of some point c E C(f) .  

Applying the homeomorphism fml[Ao.. .  Am], we get: 

c ~ N [A,~Am+I""Am]. 
n~m 
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In particular c E Am n C(f) = OAm = {minAm, maxAm}: c ranges in a count- 

able set, as does (c, Am). For e > 0 small enough, B(c, e) A Am C JAm... Am+k]. 

Hence A,~ +k is the only element of P intersecting f k (B(c, e)A Am) for every e > 0. 

So (c, A,~) determines the following symbols: AmAin+l"". E+(f ,  P)  \ E~_(f, P)  

is indeed countable as obtained from a countable set by adding (at worst) 

arbitrary finite prefixes made up from the countable alphabet P. I 

In general, E+ (f, P) will not be a T.M.C. Nevertheless F. Hofbauer has shown 

that  one can identify a part of the E+(f ,  P)  with a T.M.C. 

His proof relied on the peculiarities of the piecewise monotonic case but we 

shall show that,  by modifying the construction, one can greatly generalize it: the 

result below is true for any symbolic system (i.e., a shift-invariant, closed subset 

of A N with A countable and discrete). 

Consider E.(f ,P) = {Ao. . .Ak:  k _> 0, Ao. . -  E E + ( f , P ) } ,  the set of finite 

words. One easily sees that Ao- . .  Ak E E . ( f ,  P) iff [A0.. .  Ak] ~: C-(f) .  
To build a Markov chain over E(f ,  P),  F. Hofbauer [10, eq. (2.1)] used as 

symbols of the enlarged "alphabet" the following sets: 

f u t x ( A _ n . . . A o )  = f'~[A-n" "'Ao], A-n " "A 0  E E.(f ,P) 

which we call the g e o m e t r i c  f u t u r e s  (see [15] for an exposition of Hofbauer's 

construction in a spirit similar to ours). The geometric future of a word clearly 

determines what symbols can come next, allowing the construction of a Markov 

chain. In the abstract setting which we are interested in, and also because it 

much clarifies the proof of the Isomorphism Theorem 5.7 below, we shall use 

instead the following. 

Given a finite word A - n - . .  Ao E E . ( f ,  P) ,  we say that  A-m""  Ao E pm+l is 

its s igni f icant  pa r t ,  if it is the smallest suffix necessary to compute the future, 

i.e., if m is minimal with the property that: 

f u tx (A_m- . -  A0) = f u t x ( A _ n . . -  Ao). 

Of course a suffix is not a significant part in itself, but only with respect to a 

given finite word. 

We write sig(A_,~...  Ao) : A - r e . . .  A0 and let 15 : {sig(w) : w E E . ( f ,  P)} 

be our enlarged alphabet. We write ~ : t5 __. p for the natural projection which 

sends s ig(A_~. . .  Ao) ~-* Ao. 
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We endow/5 with the discrete topology and with the oriented graph structure 

defined by: 

sig(A-n--" Ao) ~ s ig (A_n ' ' '  AoA1) 

for all A _ n . . .  A1 E E , ( f ,  P). We call the graph/5 I-Iofbauer 's  d i a g r a m  for 

E+(f ,  P). We define: 

futx (sig(A_n.. .  Ao)) = futx ( A _ . - . .  Ao). 

The oriented graph t5 defines a two-sided topological Markov chain E(/5) C 

/hz, which we call, after F. Hofbauer, its Markov extension. ~ induces maps 

: E+(/5) __. ~.+(f, p) ,  ~ : E(/5) ~ E(f ,  p).  We shall check that they are 

well-defined. 

LEMMA 5.4: 

(i) Iff~o ~ " "  ~ f/n is a finite path on/5 then, for 0 < k < n: 

futx(/3k) = fk(fUtx(/30) fq [/3O''' Bk]) 

with B~ = ~r(Z~) (0 < i < n). 

(ii) Let a E/5. ~r restricted to the successors  ofc~, i.e., the a '  E/5 such that 

O~ "-* Ot t, ]8 o n e - t o - o n e .  

(iii) I f B  E pr~ is such that fu tx(a)  fq Nk>0[B0.-. Bk] ¢ 0, then there exists 

a unique infinite, one-sided path/3 on the graph/5 such that ~r(13) = B 

and/30 =- a. 

COROLLARY 5.5: 7r(E(P)) C E(f ,  P). 

Proof of the corollary: It is enough to prove that, for every/3 E E+ (P), B = #(3) 

belongs to ~,+(f, P). 

Let k _> 0. (i) above implies that: 

fk ( [B0""  Bk]) D futx(~3k) = f m ( [ C - m " "  Co]) 

with C-re . .  "Co e ~ . ( f , P ) .  Thus [/30" "Bk]  ~ C - ( f ) .  Hence there exists B~ 
! ] for i > k such that B o . . . B k B k + l B k + 2 . . .  E ~_( f ,  P). But k _> 0 was arbitrary 

and E+(f ,  P) is closed: B e Z+ (f, P). | 
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Proof of the lemma: We prove (i) by induction. For k = 0 it is clear. Assume 

it for some 0 _< k < n. By definition of ]5, there exists C_m.. .  CoC1 • P,. (f, P) 

such that flk = sig(C_m.-.  Co) and flk+1 = sig(C_m .-. C1). Hence: 

futx(/3k+l) = fm+l[c-m "" C1] = fm+l[C-m"" Co] N 61 

= / ( f u t x  (/3k)) cl Bk+l 

= f(fk(futx(~o) Cl [B0-.. Bk])) VI Bk+l 

= fk+l(futx(~0) 0 [B0.." Sk+l]) 

We have used the disjointness of the elements of P to see that C1 = Bk+l. 

(i) is proved. 

Let a • /5 and a ' ,  a"  be two successors of a such that ~(a')  = ~(a").  There 

exists A_n . . .  A1, B-re . . .B1 • 2 . ( f , P )  such that: 

a = s ig(A_n. . .  Ao) = sig(B_m -. • Bo), 

a '  = sig(A_n.. .AoA1), a"  = s ig (B-m ' "BoB1) ,  

A1 = B1- 

But: 

f u t x ( A - n - . -  AoA1) = f( futx(A_n . . .  Ao)) N A1 

and similarly for B, so that the futures corresponding to the words A - n " "  A0 

and B - m - "  B0 are equal. As the past did coincide before the addition of the 

symbol A1 = B1, they still do. So a '  = a" .  (ii) is proved. 

To prove (iii), it is enough to set ~3k = s ig (A_n . . .A_ lB0 . - .Bk) :  by 

assumption [A-n- . .Bk]  ~t C- ( f ) ,  so this finite word does belong to ~ . ( f , P ) .  

Uniqueness follows from part (ii) of the lemma. | 

To state the isomorphism theorem, we need the: 

Delqnition 5.6: Let ~ l ( f ,  P) C ~(f ,  P) stand for: 

{A • ~( f ,  P): n ~ f u t x ( A - n " "  A0) is not eventually constant}. 

We define the n o n - M a r k o v i a n  p a r t  of E(f ,  P) to be: 

Eo(f,P) = U aPEl(f'P)" 
p~Z 

The following theorem generalizes F. Hofbauer's lemmas 5 and 6 of [10]. 
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ISOMORPHISM THEOREM 5.7: Let E(P)  be the two-sided Markov extension 

defined above. Then the following diagram is commutative: 

~(p)  a , ~ (p)  

~( f ,  P) \ Eo(f, P) ° , E(f ,  P) \ Eo(f, P) 

and this restriction of fr is a measurable isomorphism. 

So for the natural  extensions the Markov extension is (in this sense) smaller 

than  the original system! 

Proof: 

STEP 1: We prove tha t  the image of # is included in E ( f ,  P) ". Eo(f,  P)  and 

tha t  7? is one-to-one. Let a E E(/5) and A = g-(a) E P=. For the first point,  

we remark  tha t  we have already seen that  A C E( f ,  P) ,  so it is enough, by 

a-invariance of ~(/5), to show that, A ~ E l ( f ,  P) .  

Let  B .... . . -  Bo E E .  (f ,  P )  be such that :  

ao = s ig(B_, ,  - . .  Bo) with m minimal. 

Let n > 0. There exists a finite word C - , - t  -- • C _ ,  E E . ( f ,  P )  such that.: 

c~_. = sig(C_n_t • • • C _ . ) .  

Necessarily, C _ .  = # ( a - n )  = A - n .  By Lemma 5.4 (iii), for i < n, 

a - i  = s i g ( C - n - t - ' -  C - n - l A - n ' "  A_i).  

Therefore: 

(1) s i g ( B - m ' " B o )  = s i g ( C _ m _ t . - . C - m _ l A - m . . . A o )  (n = m and i = 0), 

implying that :  

B - m " . B o  = A _ m . . . A o .  

(2) Setting n > m and i = 0, we get: 

fu tx  (C-n- l  " "  C _ ~ - I A - , ' "  Ao) = fu tx  ( B _ , ~ . . .  Bo). 
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Compare the previous equation in (2) with f u t x ( A _ n - . .  Ao). It includes the 

left hand side and is included in the right hand side, according to (1). Therefore 

it is equal to their common value. 

This shows that ao = sig(A_, --. Ao) for all n > rn. Therefore: 

(1) f u t x ( A _ , - . . A o )  is constant once n > m: a ~ E I ( f , P )  as was to be 

shown; 

(2) (~0 = s ig(A_n. . .Ao)  for n big enough, and likewise for c~p, p E Z. In 

particular, the map ~: E(/5) --* pZ is one-to-one. 

STEP 2: Let A E E(f ,  P)  \ E0(f, P): we have to prove that there exists some 

(~ E E(f ,  P)  such that ~r(a) = A. Let a E/5~. be defined by: 

= 2 im s i g ( A , _ n .  A,) for p e Z. 

As A ~ E0(f,  P),  for n big enough the equivalence class remains constant so c~ is 

well-defined in/Sz.  Clearly ~-(a) = A. 

For every p E Z, for n big enough, 

so that: 

O~p = sig(Ap_n • "" Ap), 

Ctp+l = sig(Ap_~--" Ap+l), 

C~p ---* c~p+l is an arrow of/5 

and ct E E(/5). So the map fr : E(/5) --* E(f ,  P ) \  Eo(f,  P)  is surjective and 

therefore bijective. It is clearly bi-measurable. I 

Remarks: 1. As announced, this theorem does not assume any property for the 

underlying dynamical system ([0, 1], f ) .  It applies to the symbolic dynamics of 

any dynamic system, in fact, to any symbolic system. 

2. For ~ to be one-to-one in this general setting requires that /5 was made 

of significant parts and not only made of the futures as in Hofbauer's original 

construction. To see this, one can consider - -wi th  obvious definitions-- the 

case of the sofic system defined as the subshift of {0, 1} ~ excluding sequences 

containings blocks of l 's  of odd-length. 

3. Variar.ts of Hofbauer's original construction are well-known in the theory of 

sofic systems defined by B. Weiss. 

4. ~ is continuous, but ~r -1 is, in general, not even finitary (see [17]). 
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6. En t ropy  of the  non-Markovian par t  

We are going to show that the dynamics through C(f)  give some control on the 

non-Markovian part of the symbolic dynamics introduced above. 

THEOREM 6.1: Let ~o(f , P) be the non-Markovian part of the symbolic system 

defined by some continuous interval map. 

I f#  is a c~-invariant probability measure concentrated on To(f, P) then: 

h(#) <_ htop(f, C(f)), 

i.e., hmet(E0(f, P)) _< htop(f, C(f)) .  

The main, "geometric" property of ([0, 1], f)  which accounts for the above 

theorem is the following one: 

the cylinders [Ao.-. A,~] are connected, Ao""  A~ E E.(f ,  P). 

Another, more technical requirement will be to identify ~0 (f, P) with an invariant 

subset of the natural extension of ([0, 1], f) ,  so that we can exploit the (Bowen) 

topological entropy of the non-invariant subset C(f), htop(f, C(f)), which is 

defined with respect to the [0, 1]-metric as the limit, when e ~ 0+, of: 

htop(f, C, e) : lim sup 1 log r(e, n, C). 
n - - - ~ O O  

On the interval, this identification goes through for any invariant, probability 

measure with no atomic ergodic component. 

Let A E E(f, P). If p < q are such that: 

futx[Ap--" Aq] C futx[Ap+l'--Aq] 

then [p, q] is called a shadowing interval for A. A E ~l(f,  P) iff there exists 

shadowing intervals I-n,  0] with n arbitrarily large. 

The connectedness of the cylinders implies the following fundamental property 

(which accounts for the terminology): 

LEMMA 6.2: Let A E ~'o(f , P). If ~,q] is a shadowing interval, then: 

[Ap+~ . . . Aq] n $ ( a A p )  # ~. 
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Remarks: 1. This is the only property of the underlying dynamical system that 

we shall use in this section. 

2. It says that  Ap+l ... Aq is the beginning of the itinerary of some point of 

f(OAp): so that, under suitable hypothesis, ApAp+l... represents some point 

x E [0, 1] whose orbit stays close to the one of some point of f(Ap) for the times 

[p + 1, q - T], with T some constant. 

This explains why something like the above theorem should be true. 

3. Finally, the inequality above is sharp in the sense that it is easy to build 

"abstract" examples, for instance invariant subsets S of full, bilateral shifts shad- 

owed in an obvious sense by some compact subset of the corresponding unilateral 

shift. On the other hand, the statement with Bowen entropy substituted for met- 

ric entropy is false. So this is, in an essential way, a measure-theoretic statement. 

A technical remark is in order. Notice that a-q-lEl( f ,  P) C a-qEl(f ,P).  
Indeed, if ~v, q + 1] is a shadowing interval then so is [p, q], because [p,q + 1] is a 

shadowing interval iff: 

f(Ap) ~ lAp+l-.-Aq+l] 

as f: Ap --~ f(Ap) is a bijection. But changing q + 1 to q can only enlarge the 

right hand side. 

Therefore, for any invariant, probability measure #, 

a-q- lEl ( f ,P)  = a-qEl(f ,P) (mod #). 

Hence the non-Markovian part can be written as: 

~o(f,  P) = N trPEl(f '  P) U N 
pEZ 

with N of zero measure with respect to any probability invariant measure. 

From now on, we forget about N and write Eo(f, P) for the intersection: A E 

Eo(f, P)  if[ there exist shadowing intervals I -n ,  m] with n, m arbitrarily large. 

Proof of Lemma 6.2: The inequality of the futures in the definition of shadowing 

intervals implies, as fq-P restricted to lAp. . .  Aq] is a bijection, that: 

f(Ap) ~ [Ap+i..-Aq]. 

As [Ap+l • • • Aq] is connected and, by Remark 5.1, Of(A_,~_I) = ](OA_n_l), this 

is equivalent to: 

f(aAp) N [Ap+l. . .  Aq] # 0. | 
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Proof of the theorem: L e t .  be a a-invariant probability measure concentrated 

on Eo(f,  P).  As the metric entropy is affine, it is enough to consider the case 

w i t h .  ergodic. 

If # has atoms then it is concentrated on a periodic orbit and the inequality 

to be proved is trivial. So we can also s u p p o s e ,  atomless. 

F: [0, 1] \ C - ( f )  --* ~+( f ,  P)  extends naturally to the natural extensions to a 

map F: [ \  C'(f) ~ E ( f , P )  with C'(f) = Up~z]p # - l c ( f )  (we define likewise 

/~(f)) .  Lemma 5.3 extends to the natural extensions and allows the identification 

(through F) o f .  with an ergodic and atomless ]-invariant probability measure on 

],  which we shall also write . .  Set I0 = F - I (E0( f ,  P)) \ / ~ ( f ) . .  is concentrated 

on I0. 

We shall prove the desired bound by using the Katok formula for the metric en- 

tropy of a map on a compact metric space [12] (it is stated for a homeomorphism, 

but this is irrelevant): 

h(.)  = lim h( . , e )  with h(g,e) = limsup l l o g r ( e , n , . ) ,  
e----~0 ~- n ~ o o  Tt 

r(e, n, . )  being the minimal cardinal of an (e, n)-cover o f . ,  that is, the minimal 

number of ((, n)-balls necessary to cover a set of . -measure at least A, with 

A c (0, 1), a constant, independent of n. 

Fix e > 0. We shall construct an (e, n)-cover of . .  Set I(0 the cardinal of some 

finite (e, 1)-cover of I. Set (~ = e/5(logK0 + 1) < e. 

1. As f is continuous, there exists 5 > 0 and No < oo such that,  if x, y E [ 

and I#(]-N°(x)) -Sr(]-N°(y)) I < (5, then d(x,y) < e. 

2. There exists NI < cc such that,  for all n _> N1, there exists Rn, an (6/2, n)- 

cover of f (C( f ) )  C [0, 1] with cardinal less than e (h~°.(f'c(f))+~)n. 

3. For . -almost  all x G [, #(x) ~ C - ( f )  U H(f) ,  so that,  if A -- F(~(x)),  

Nk>0 f - k A k  = {x}. But, for every n, N~=o f - k A k  is an interval, therefore for 

. -a lmost  all x E [, 

m(x) = inf(k _> 1: diam(Pk(~(x))) < 6/2} < co. 

One can select I1 c I0 with . ( I1)  > 1 - (~ such that: 

M1 = sup{m(x): x E I1} < oc. 

Let ml  = max(N1, c~-lM1). 
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4. Let: 

n(x)  = inf{k _> m l :  I - k ,  0] is a shadowing interval for F(x)}.  

As tL(Io) = 1, n(.) is well-defined and finite almost  everywhere. One can select 

I2 C I1 with p(I2) > 1 - 2a such that :  

M2 = sup{n(x):  x • / 2 }  < ~ -  

5. Applying Birkhoff 's  ergodic theorem, we find a measurable subset E of i 

with p ( E )  > 1/2 and an integer N2 such that ,  if x C E and n _> N2, 

l c a r d { _ N 0 _ < k < n  N o : f k ( x ) • I 2 } > l - 3 a .  
n 

Let N3 = max(N2, a - l M 2 ) .  For x • E and n > N3, we cut [ -No ,  n - 1 - No] 

into shadowing intervals [bi, ai]: set b-1 = n - No and, for i > 0, 

(i) ai = max{k < bi-1 : n ( f k ( x ) )  <_ M2}, 

(ii) bi = ai - n(a~). 

We notice that ,  for every i > O, ~(]b~+l(x)) is in [Ab~+l- ' -Aa,]  together  with 

some point  zi of f ( C ( f ) ) .  We recall tha t  there exists z~ • Ra,-b~ such tha t  

I fk(z i )  - fk(z~) I < 5/2, for 0 _< k < ai - bi. Therefore, 

[ff(~ o ? b ' ( x ) )  -- ff(z~)l ~ ~ for 0 < k < ai - bi - M, .  

Let r -- min{i > 0: b~ < - N o }  < n / m l .  Set 

A = { - N o  < k < n - No: f k ( x )  • [~} and 

r--1 

B = U Ibm, a~ - M1] N A. 
i=O 

We have card A _> (1 - 3 a ) n  and, as: 

r-1 ]) 
a i ] U [ b r , a r  , 

SO, 

card B _> (1 - 3a)n  - rM1 - M2 

>_ (1 - 5 ( ~ ) n .  
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The knowledge of z~,. z ~ (at most e (h~°~(f'c(f))+`)'~ choices) and of the • "~ r - - 1  

positions of intervals Ibm, ai], 0 < i < r (at most 

n / m l C  2n/ml -- exp(n(h(2/ml)  + o(1))) 

choices) determines ]k(x)  with a precision e for k • B + No. But: 

card ([0,n - 1] \ ( B +  No)) _< 5an _< logg0 + 1 n" 

Finally, within a precision of e, there is at most K 5~n choices for the positions of 

]k for k B+N0. Asgo 

r(e, n, it) < exp(h(2/ml)  + (htop(f, C(f )  ) + e) + e + o(1))n 

with h(t) = - t  log t - (1 - t ) l og (1  - t )  and o(1) a function decreasing to zero as 

n ~ oc. First taking logarithms and dividing by n, then letting n ~ oc and e 

decrease to 0, proves the theorem. | 

7. P r o o f  o f  T h e o r e m s  2.5 and 2.9 

We have already noted that the Multiplicity Theorem 2.5 is a direct corollary 

of 4.8 and 2.2, using the following result of P.M. Gurevi~: 

THEOREM 7.1 (P.M. Gurevi~ [9]): Let G be a countable oriented graph. 

Assume G irreducible. 

(1) There exists at most one maximal measure for the topological Markov 

chain (E(C), a). 

(2) There exists exactly one maxima/measure iff G is "positive-recurrent". 

The property of "positive-recurrence" has been introduced by D. Vere-Jones 

[20, 21]. We do not state its definition, as we will not use it - -  see Appendix A. 

It only remains to prove the Structure Theorem 2.9. 

Now we fix K C [0,1] a P.E.C. with htop(f[K) > ! l o g M ( f ) .  To apply the 

h-conjugation result of sections 5 and 6, we need the following estimate: 

PROPOSITION 7.2: Let f: [0, 1] --* [0, 1] be C r with r >_ 1 and Z be the zero set 

o f f ' .  Then: 
1 

htop(f, Z) _< r logM(f) .  
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Obviously Z D C(f) .  

Proof'. Fix e > 0. Write h = htop(f, Z). For n >_ 1, fix some maximal (e, n)- 

separated subset of Z, i.e., En C Z such that, if x E En, Bn(x, e) MEn = {x}, 

En  = {x~ < x2 < . . .  < xN(n)}.  

By definition of the Bowen entropy in terms of maximal separated sets [2], there 

exists arbitrarily large integers n, such that N(n) >_ e (h-e)n. We consider only 

these n. Let r = R + a w i t h R i n t e g e r  a n d 0  < a_< 1. If there did not exist 

k E {1 . . . . .  N(n) - R + 1} such that: 

IXk+R-1 -- xkl <_ e - (h-2e)n 

XN -- Xl ~_ [NR(--~nl l e - (h-2e)n  ~ 00, then which is absurd. 

Therefore, for large n, there exists an interval containing at least R zeroes of f '  
L ,J  

and with diameter smaller than e -(h-2~)n. Hence the diameter of f([xk, xk+n-1]) 

is bounded by Hbl~(f) [e-(h-2e)n] r. But  xk, xk+l are (e,n)-separated so that 

there exists 0 < l < n such that: 

< < Hblr(f) t-1. 

Taking logarithms and letting first n --* co, then e --* 0, we get the stated 

inequality. I 

Thus the bound on hmet(O', ~0 ( f ,  P ) )  established by Theorem 6.1 is enough to 

show that  H = ~-1 o~r indeed defines a h-conjugation between (L, F),  the natural 

extension of (K, ])  and the shift on I I - I (L)  C N(/5). It remains to show that  

the subset II-~(L) is indeed defined by an irreducible part of/5, that is: 

H-I(L)  = Z ( i ) A N  

with/:  an irreducible part of/5 (a subset/5 defining an irreducible graph, maximal 

for inclusion) and N some set negligible for any p E MH(E(/5)),  that is, invariant, 

ergodic, probability measure # on E(/5) with entropy h(#) > ~ tog M ( f ) .  

Let 5 E 2t4H(H-I(L)). By ergodicity, 5 is supported by E(/:) with i some 

irreducible part. But, poII .5  is ~oncentrated on K C [0, 1] and, by h-conjugation 

(and easy properties of natural extensions), is ergodic and atomless. But we have: 
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PROPOSITION 7.3: Let  f :  [0, 1] --~ [0, 1] be a continuous map  and K be a transi- 

tive component  with posit ive entropy. Then there e,xists at most  one irreducible 

part  I C [~ sud~ that #(p  o #(E+(/~)) N K) > 0 for some ergodic, atomless, 

invariant, probabili ty measure. 

Assuming this proposition for the moment, we find that /: is independent of 

z). Therefore N+ = H - I ( L ) \ ~ ( / ~ )  has zero measure with respect to any i • 

AdH(II- I (L)) ,  in fact any D • AdH(E(~5)). 

II is continuous, therefore H(E(I))  is topologically transitive. As it inter- 

sects the transitive component L on an infinite set, it must be contained in it: 

H - ' ( L )  D ~( i ) .  

So H - I ( L )  = E(/=) O N+ and, setting N = N+, the claim, and therefore the 

structure theorem, are proved. | 

To prove the proposition above we first state a lenuna of Hofbauer which 

subsists in our slightly different Markov extension: 

LEMMA 7.4 (F. Hofbauer's lemma 4 of [11]): Assmne  a,/3 • E+([J) such that 

II(a)  = II(~) • [0, 1] exists and does not belong to: 

(7.1) H ( f )  0 0 f k e ( f ) "  
k>O 

Then there exists n < c~ such that: 

On(a) = ~"(Z)- 

Proof: Let A = #(a).  There exists B - t - "  Be • E , ( f ,  P),  with Be = Ao, such 

that  ao = s ig(B_t- . -  Be). By Lemma 5.4 (iii), 

ak = s ig(B_m. . .  B _ I A o . . .  Ak) for k >_ 0. 

Also, as f k + m l [ B _ m " "  Ak] is a bijection, 

fu tx  ( B _ m  . . . B - 1 A o .  . . Ak)  = f k ( f u t x ( B - m  . " Be) N [A0"-. Ak]). 

By assumption, the intervals [A0"-. Ak] reduce to {II(a)} as k ~ c~ and H(a) is 

not on the boundary of futx ( B - r e . . -  B0). Thus there exists some kl _> 0, such 

that: 

[A0. • • Ak] C futx (B_m • • • Be), 
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in particular, 

(~k = sig(A0.. .  Ak) for k >_ kl. 

The same is true with/3 instead of a for k _> some k2. Therefore, n = max(k1, k2) 

has the stated property. | 

Proof of the proposition: Let J be a periodic interval such that  K is 

PEC(orb(J) ) .  Let I1, I2 be irreducible parts o f /5  such that the related inter- 

section with K has positive measure with respect to some ergodic, atomless, 

invariant probability measure. As we can avoid a set of zero measure, it is pos- 

sible to select: 

(i) (~ E E+( i l )  such that x = II((~) E K n f t ( f )  exists and is not in the 

backward orbit of the exceptional set (7.1) or in the boundary of orb(J) .  

(ii) ? E E+(2:2) such that  z -- II(~/) E K exists and is neither in the set defined 

by equation (7.1) or in the countable set Y defined by Lemma 4.5. 

Fix e > 0 such that  B(x,e) C futx(a0)  ~ orb(J).  By Lemma 4.5, 

U fkB(x 'e)  D orb(J)  \ Y ~ z 
k>0 

so that  there exists k _> 0 such that feB(x,e)  ~ z. As z ~ Ut>ofl(C(f)) ,  z is 

in fact in the interior of fkB(x ,  e). Set y e B(x, e) such that fk(y) = z and set 

B = F(y). According to Lemma 5.4 (iii), So and B together define an itinerary 

/3 o n /5  such that/30 -- c~0 and 1-I(ak~) ---- z. 

Now we apply the previous lemma to ak(~) and "~: ak+'~(~) = a'~(7), for some 

n _> 0. This implies that  I1 precedes -t2. By symmetry, the two irreducible parts 

precede each other, and so are equal. | 

Appendix A. Counter-examples 

T o  THE EXISTENCE AND UNIQUENESS OF MAXIMAL ENTROPY TRANSITIVE 

COMPONENTS. 

We build for arbitrarily large r, and any e > 0, C r self-maps of the interval fx, 

f2 such that: 

(i) f l  has no transitive component of maximum entropy and: 

1 log R(A). htop(/1) = r 
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(ii) f2 has infinitely many transit ive components  of maximum entropy and: 

llogR(f2)-e < hwp(f2)< } IogR(f2) 
with e > 0 arbitrari ly small. 

S K E L E T O N .  L e t  r > 3. Set A = (3e') ~. Pick a C °~ piecewise monotonic  map  

g: [0, 4] --~ [0, 4] respectively increasing, decreasing and increasing on the sub- 

intervals: [0, 1/2], [1/2, 1], [1, 4]; and such that:  

(i) g(x) = Ax for x e [0, 3~-1]. 

1 for n > 1 (ii) g([x,,,y,~]) = A - n - ~ [ x , , y , ]  with xn = 1 + 1,  Yn = xn + ~ _ 

= 3 ) .  

(iii) g(4) < 1. 

(iv) max~e[o,4] Ig'(x)l = A (it is here tha t  we need v = 3). 

(v) g(k)(xn) = g(k)(yn) = 0 for all k ___ 1 and n > 1. 

As g([1, 4]) C [0, 1], the topological entropy of g is bounded by tha t  of the 

3-shift with subsequence 22 excluded: htop(g) < log(1 + v/3) < log 3. 

EMBEDDING OF THE SUBSHIFTS. Select a C ~¢ map s: R --, R such that ,  for all 

n E Z ,  

(i) s(x  + 2) = s(x) for all x E 

(ii) s(2n) = 0, s(2n + 1) = 1 for all n E Z and s: [n ,n  + 1] -+ [0,1] is a 

bijection, increasing if n is even, decreasing otherwise. 

(iii) s(k)(n) = 0 for all k > 1. 

(iv) max~eR Is'(x)l < 2. 

Let  Mn = 2E(m~13 ")  + 1, n > 1 with m ,  > 1 a non-decreasing sequence of 

positive integers such tha t  lir~__.~ ~ logm,~ = 0. We define a map  f :  [0,4] --* 

[0, 4] by setting: 

(i) f ( x )  = g(x) i f x  • (.J,~>l[Xn, y,~]. 

(ii) f ( x )  = )t - n - ~  - (xn + (y,, - x,~). s (Mn ~-=z-~-)~ for x • J. x y, ,-z, ,z] 

We notice that ,  neglecting trivialities, each ( o r b ( J n ) , f )  is a transit ive 

component  isomorphic to some obvious subshift of finite type. In part icular,  

htop(f[ orb(Jn))  = (n + u) -1 log M , / 2  log3. 

As each orb(Jn)  is invariant, we see tha t  any ergodic, invariant probabil i ty 

measure for f is concentrated either on some orb(J, , ) ,  or on the set 
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[0,4] \ [ . J . > l ° r b ( J - ) "  The  metr ic  entropy is thus bounded  by log3 in the first 

case, and by htop(g) ___ log(1 + v/3) in the second case. Therefore htop(f)  = log3 

and the max ima l  ent ropy transi t ive components  are to be found exclusively 

among  the orb(Jn) ,  n >_ 1. 

Clearly f is C °~ in the neighbourhood of any point  x E [0, 4] \ { 1 }  and: 

sup If'(x)] = (3e ) 
• ~[o,4] -.{1} 

I f f  is C ~ in a ne ighbourhood of 1 then f(k)(1) -= 0 for all 0 < k < r. So f is C ~ 

on [0, 4] iff, when x ~ 0, 

(1) lim~--+0/(k)(l+x) = 0 for k = 0 , . . . , r  - 1, 

(2) 1(~)(1 + x) --* 0. 

We notice tha t  these conditions are already satisfied for 1 + x restr icted to 

[ 0 , 4 ] \ ( _ J n > l J n .  For k _> 0 and l + x  E [,J~>0Jn, writ ing n for the only 

integer such t ha t  1 + x E Jn,  

If(k)(1 + x)l < A . . . .  M ~ n  2k-2 

n2k-2  
_ _ _ _  ~-v  e -enr .  

We finally r emark  tha t ,  as 0 is a fixed point  with i f ( x )  = A, R ( f )  = M ( f ) .  

Therefore  we obta in  the announced counter-examples  to: 

(i) the existence of a m a x i m u m  entropy transi t ive component ,  if we set  e = 0 

and mn ~- n2; 

(ii) the finiteness of their number,  if we set e > 0 and mn = 1. 

TRANSITIVE, C r MAP WITHOUT MAXIMAL MEASURE. Along the same lines 

as in the previous counter-examples,  it is possible to define a C r map,  with 

M ( f )  = (ee3) r, for any finite r such tha t  the dynamics  of f reduces to the one 

of the T.M.C.  defined by the following graph G: 

(1) 
(2) 

(3) 

(4) 
with v 

G contains N, 

there is one pa th ,  of length 3 ~+ ' ,  f rom n to all integers m _> n - l ,  m ~ n, 

there are 3 ~ - "  pa ths  of length 3 n from n to n, for all n _> u, 

there are no other  arrows, 

some posit ive integer. 
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It is not difficult to see that  hmet(Z(G)) -- log3 (using Gurevi¢ entropy [8]) and 

that we can remove any finite number of arrows without changing the entropy. 

Therefore G is not positive-recurrent (see I. Salama [18]) and it has no measure 

of maximal entropy by B.M. GureviCs Theorem 7.1 above. 

Appendix  B. Semicontinuity of  the metric entropy 

We prove directly that  local entropy bounds the defect in upper-semicontinuity 

of the metric entropy (Proposition 3.2). 

Let # be an invariant, probability measure on ([0, 1], f ) .  The metric entropy 

of # is: 

(7.2) h(#) = sup h(tt, P) 
P 

where h(p, P) = infn>m ~ H a ( P  vn) with pv,, the n-times iterated partition: 

pVn = p v  f - l p v . . . V  f - n+ lp  = {AoN f - IAIN. . .Nj-n+IA,~_I  # 0 : Ai E P} 

and Ha(S ) = - ~AeS  #(A)log#(A). 

Proof." First we are going to prove the following, apparently weaker, bound: 

(7.3) h,,sc(f) < hlo¢(f) + log2. 

That this implies the stated bound is standard: one considers fq instead of f 

for q ~ o¢ and remarks that 

(i) hs,(v) = qhl(u), 
(ii) hlo¢(/q) < qhlo¢(f) as hlo¢($ q, 6) <_ qhlo¢(I, e) as soon as [x - Yl < 6 ==~ 

[fk(x)--fk(y)[ < e for k = 0 , . . . , q -  1, 

so that  one may divide by q, replacing log 2 by ~ --, 0. q 
To prove (7.3), let e > 0 and # be an invariant probability. Select a finite 

partition Q with diameter r so small that bloc(f, r) _< bloc(f) + e and such that  

I.t(UAe Q OA) = O, so that # is a point of upper-semicontinuity of v ~ h(v, Q). 

Clearly, for any finite partition P, 

h(#, P) _< h(/~, Q) + liminf 1Ha(PVnlQVn ) 
n---* oo n 

with Ha(SIT ) = Ha(S V T) - Ha(S ) the conditional entropy of S knowing T. 
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We proceed as in the proof of the variational principle by M. Misiurewicz [13]. 

By regularity of p and easy approximation results regarding the entropy of a finite 

partition, one can restrict the partition P in (7.2) to be a c o m p a c t  p a r t i t i o n  

in the following sense: 

P = { K I , . . . ,  Kr,  U} with 1 _< r < e¢ and each Ki compact. 

We claim that,  for any compact partition P: 

limsup 1Hv(pvnlQVn) <_ hloc(f) + log2 + 2e. 
n - - * o o  n 

Once the claim will be proved for e > 0 arbitrarily small, (7.3) and therefore the 

proposition will follow. We turn to the claim: 

It is immediate that: 

Hv(PVnlQ v'*) < log max card{D • pVn : D N E ¢ 0}. 
- -  EEQw. 

Let ~f = ~ min{d(Ki, K/)  : i ¢ j} > 0 as P is a compact partition. Every set 

E E QV, is included in some (r, n)-ball. This Bowen ball can be covered using at 

most e (hl°¢(f'r)+e}n ~_ e (hl*c(f)+2e)n (~, n)-balls for large n. But if B is a (/f, n)-ball, 

fk(B) with 0 _< k < n can meet at most one of the compact sets Ki (maybe also 

U). 
Therefore the number of elements D of pv,~ that may meet E is bounded by: 

2n e(hlo¢(f)+2~) n, 

proving the claim. | 
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